

IM2665 Chemistry of Nanomaterials

Solubility and Solubility Products Nanomaterials Fabrication by Precipitation

Assoc. Prof. Muhammet Toprak

Functional Materials KTH Royal Institute of Technology

11/09/14

Objectives:

- Learning about precipitation reactions
- Learning about the solubility constant expression K_{sp} and how to use it
- Learning about the solubilities of various classes of ionic solids and how to use that knowledge to analyze for the presence of unknown ions in solution
- Nanomaterials synthesis

Synthesis, magnetic and electrical characteristics of poly(2-thiophen-3-yl-malonic acid)/Fe₃O₄ nanocomposite

M. Aydın^a, B. Ünal^{b,c}, B. Esat^{d,*}, A. Baykal^{c,d}, E. Karaoğlu^d, M.S. Toprak^e, H. Sözeri^f

2.1. Materials

2-Thiophen-3-yl-malonic acid (T3MA), anhydrous iron (III) chloride (98%) (FeCl₃), ammonium hydroxide (NH₄OH), iron (III) nitrate nonahydrate (Fe(NO₃)₃-9H₂O, 98%) iron (II) chloride tetrahydrate (FeCl₂-4H₂O, 98%), concentrated sulfuric acid (H₂SO₄), hydrochloric acid (HCl), sodium hydroxide (NaOH) were all of analytical purity (obtained from Merck and Sigma–Aldrich) and used as-received, without any purification.

2.4. Synthesis of PT3MA/Fe₃O₄ nanocomposite

Stoichiometric amounts of Fe(III) and Fe(II) chloride salts (with a molar ratio of 2:1) and 50 mg of PT3MA were dissolved in 100 ml distilled water under vigorous stirring. Then a 2M aqueous NaOH solution was added very slowly until the pH was raised to ~11 and a black suspension was formed. This suspension was then refluxed at 90°C for 12 h, under vigorous stirring and Ar gas. Magnetic particles were separated from the aqueous solution by magnetic decantation, washed with distilled water several times and then dried in an oven overnight.

3

11/09/14

- **Ksp** is the equilibrium constant between an ionic solute and its ions in a saturated solution.
 - A very small K_{sp} indicates that only a small amount of solid will dissolve in water.

Some Values For Solubility Product Constants (K _{sp}) At 25 °C			
TABLE 16.1 Some Solubility Product Constants at 25 °C			
Solute	Solubility Equilibrium	K _{sp}	
Aluminum hydroxide	$AI(OH)_3(s) \Longrightarrow AI^{3+}(aq) + 3 OH^{-}(aq)$	1.3×10^{-33}	
Barium carbonate	$BaCO_3(s) \Longrightarrow Ba^{2+}(aq) + CO_3^{2-}(aq)$	5.1×10^{-9}	
Barium sulfate	$BaSO_4(s) \Longrightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$	1.1×10^{-10}	
Calcium carbonate	$CaCO_3(s) \Longrightarrow Ca^{2+}(aq) + CO_3^{2-}(aq)$	2.8×10^{-9}	
Calcium fluoride	$CaF_2(s) \Longrightarrow Ca^{2+}(aq) + 2F^{-}(aq)$	5.3×10^{-9}	
Calcium sulfate	$CaSO_4(s) \Longrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq)$	9.1×10^{-6}	
Calcium oxalate	$CaC_2O_4(s) \Longrightarrow Ca^{2+}(aq) + C_2O_4^{2-}(aq)$	2.7×10^{-9}	
Chromium(III) hydroxide	$Cr(OH)_3(s) \Longrightarrow Cr^{3+}(aq) + 3 OH^{-}(aq)$	6.3×10^{-31}	
Copper(II) sulfide	$CuS(s) \Longrightarrow Cu^{2+}(aq) + S^{2-}(aq)$	8.7×10^{-36}	
Iron(III) hydroxide	$Fe(OH)_3(s) \Longrightarrow Fe^{3+}(aq) + 3 OH^-(aq)$	4×10^{-38}	
Lead(II) chloride	$PbCl_2(s) \Longrightarrow Pb^{2+}(aq) + 2 Cl^{-}(aq)$	1.6×10^{-5}	
Lead(II) chromate	$PbCrO_4(s) \Longrightarrow Pb^{2+}(aq) + CrO_4^{2-}(aq)$	2.8×10^{-13}	
Lead(II) iodide	$PbI_2(s) \Longrightarrow Pb^{2+}(aq) + 2I^{-}(aq)$	7.1×10^{-9}	
Magnesium carbonate	$MgCO_3(s) \Longrightarrow Mg^{2+}(aq) + CO_3^{2-}(aq)$	3.5×10^{-8}	
Magnesium fluoride	$MgF_2(s) \Longrightarrow Mg^{2+}(aq) + 2 F^{-}(aq)$	3.7×10^{-8}	
Magnesium hydroxide	$Mg(OH)_2(s) \Longrightarrow Mg^{2+}(aq) + 2 OH^{-}(aq)$	1.8×10^{-11}	
Magnesium phosphate	$Mg_3(PO_4)_2(s) \Longrightarrow 3 Mg^{2+}(aq) + 2 PO_4^{3-}(aq)$	1×10^{-23}	
Mercury(I) chloride	$Hg_2Cl_2(s) \Longrightarrow Hg_2^{2+}(aq) + 2 Cl^-(aq)$	1.3×10^{-13}	
Mercury(II) sulfide	$HgS(s) \Longrightarrow Hg^{2+}(aq) + S^{2-}(aq)$	2×10^{-53}	
Silver bromide	$AgBr(s) \Longrightarrow Ag^{+}(aq) + Br^{-}(aq)$	5.0×10^{-13}	
Silver chloride	$AgCl(s) \Longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$	1.8×10^{110}	
Silver iodide	$AgI(s) \Longrightarrow Ag^{+}(aq) + I^{-}(aq)$	8.5×10^{-12}	

Links for solubility products

http://www.solubilityofthings.com/water/ions_solubility/ksp_chart.php http://dbhs.wvusd.k12.ca.us/webdocs/Equations/Solubility-Table.html

Solubility Chart

Soluble	Insoluble
Group I and NH4 ⁺ compounds	carbonates (except Group I, NH4 ⁺ and uranyl compounds)
nitrates	sulfites (except Group I and NH4 ⁺ compounds)
acetates (ethanoates) (except Ag ⁺ compounds)	phosphates (except Group I and NH4 ⁺ compounds)
chlorides, bromides and iodides (except Ag ⁺ , Pb ²⁺ , Cu ⁺ and Hg2 ²⁺)	hydroxides and oxides (except Group I, NH_4^+ , Ba^{2+} , Sr^{2+} and TI^+)
sulfates (except Ag ⁺ , Pb ²⁺ , Ba ²⁺ , Sr ²⁺ and Ca ²⁺)	sulfides (except Group I, Group II and NH4 ⁺ compounds)

11/09/14 http://phet.colorado.edu/simulations/sims.php?sim=Salts_and_Solubility

Aluminium Al ³⁺ SXS1SIISIAmmonium NH4*SSSSSSXSSSCalcium Ca ^{2+a} SISSSSSSSSSCalcium Ca ^{2+a} SISISSSSSSSCopper(II) Cu ^{2+a} SXSISSIISICopper(II) Fe ^{2+a} SISISIISIIron(II) Fe ^{2+a} SISISIISIIron(II) Fe ^{2+a} SISISIISIIron(II) Fe ^{3+a} SSSSSSSSSSSIron(II) Fe ^{3+a} S<
Ammonium NH4+SSSSSSSSCalcium Ca ²⁺ SISISSSISSICopper(II) Cu ²⁺ SXSISSISSISSICopper(II) Cu ²⁺ SXSISISSISSIIron(II) Fe ²⁺ SISISIISSIIron(II) Fe ³⁺ SXSISIISSIIron(II) Fe ³⁺ SISISIISIIron(II) Fe ³⁺ SISISIISIIron(II) Fe ³⁺ SISISIISIIron(III) Fe ³⁺ SISISIISIIron(III) Fe ³⁺ SISIIISIIron(III) Fe ³⁺ SISIIISIIron(III) Fe ³⁺ SISIIIIIIIron(III) Fe ³⁺ SIIIIIIIIIron(III) Fe ³⁺ SIIIIIIIIIIron(III) Fe ³⁺ IIIIIII<
Calcium Ca ²⁺ SISISSISSICopper(II) Cu ²⁺ SXSISIISIIron(II) Fe ²⁺ SISISIISIIron(II) Fe ²⁺ SISISIISIIron(II) Fe ²⁺ SISISIISIIron(III) Fe ³⁺ SXSISIISIIron(III) Fe ³⁺ SISISIISIIron(III) Fe ³⁺ SISISIISIIron(III) Fe ³⁺ SISIIISIIron(III) Fe ³⁺ SISIIISIIron(III) Fe ³⁺ SIIIIIIIIIron(III) Fe ³⁺ IIIIIIIIIIIron(III) Fe ³⁺ III<
Copper(II) Cu ²⁺ S X S I S I I S I Iron(II) Fe ²⁺ S I S I S I I S I Iron(II) Fe ³⁺ S X S I S I I S I Iron(III) Fe ³⁺ S X S I S I I S I Magnesium Mg ²⁺ S I S
Iron(III) Fe ³⁺ S X S I S I I sS I Magnesium Mg ²⁺ S I S I S I I sS I Potassium S S
Magnesium Mg2+SISISIPotasium SSSSSSSSS
Potassium S S S S S S S S S S
K ^T
Silver Ag⁺ I I X S I I sS I
Sodium Na ⁺ SSSSSS
Zinc Zn2+SISISI

http://en.wikipedia.org/wiki/Solubility_chart

Example:

$$Ca(OH)_2(s) \leftrightarrows Ca^{2+}(aq) + 2OH^{-}(aq)$$

$$K_{sp} = [Ca^{2+}][OH^{-}]^{2}$$

Example: $Ag_2CrO_4(s) \rightleftharpoons 2Ag^+(aq) + CrO_4^{2-}(aq)$

$$K_{sp} = [Ag^+]^2 [CrO_4^2]$$

17

Solubility and K_{sp} Solubility = grams of solute liter of solution Molar = moles of solute solubility liter of saturated solution \mathbf{K}_{sp} is the equilibrium constant between the ionic solid and saturated solution.

11/09/14

Calculating K_{sp} from Solubility Data

Step 1: Use data to determine molar solubility.

Step 2: Use molar solubility and stoichiometry of dissociation to determine concentrations of cations and anions.

Step 3: Write equilibrium expression, calculate K_{sp} .

11/09/14

A saturated solution of AgCl in contact with undissolved solid is prepared at 25°C. The concentration of Ag⁺ ions in the solution is found to be 1.35×10^{-5} M. Assuming that AgCl dissociates completely in water and that there are no other simultaneous equilibria involving the Ag⁺ or Cl⁻ ions in the solution, calculate K_{sp} for this compound.

Calculating solubility from K_{sp}

Step 1: Use equilibrium expression & K_{sp} value to determine concentrations of cations and anions.

Step 2: Use ion concentrations to determine molar solubility.

Step 3: convert molar solubility to solubility (grams solute/liter).

Calculate the solubilit hydroxide in g/L.	y of copper	: (II)	
$K_{sp} = 2.2 \times 10^{-20}$			
Molar mass $Cu(OH)_2 = 97$	7.57g/mol		
$Cu(OH)_2 \leftrightarrows$	$Cu^{2+}_{(aq)} + 2OH^{-}_{(aq)}$		
Initial	0.00	0.00	
Change	+x	+2x	
Equil.	x	2x	

$$K_{sp} = [Cu^{2+}][OH^{-}]^{2}$$

$$2.2 \times 10^{-20} = (x)(2x)^{2}$$

$$x^{3} = \frac{2.2x10^{-20}}{4} \qquad x = 1.8x10^{-7} M$$
Solubility Cu(OH)₂ = $\frac{1.8x10^{-7} mol}{L} \times \frac{97.57g}{mol}$

$$= 1.8x10^{-5} g/L$$

Initial		0.00	0.020
Change	X	+x	2x
Equil.		+ x	0.020+2x

Explaining the Common Ion Effect

The presence of a common ion in a solution will <u>lower</u> the solubility of a salt.

• LeChatelier's Principle:

The addition of the common ion will shift the solubility equilibrium backwards. This means that there is more solid salt in the solution and therefore the solubility is lower!

11/09/14

Solubility & pH

- The solubility of almost any ionic compound is affected if the solution is made sufficiently acidic or basic.
- The solubility of slightly soluble salts containing basic anions increases as [H⁺] (pH↓).

At 25°C the molar solubility of
Mg(OH)₂ in pure water is 1.4x10⁻⁴M.
Calculate its molar solubility in a
buffer medium whose pH is :

$$K_{sp} = 1.2x10^{-11}$$

a.) 12.00 b.) 11.00
 $Mg(OH)_{2(s)} \leftrightarrows Mg^{+2}_{(aq)} + 2OH^{-}_{(aq)}$

• Calculate the concentration of aqueous ammonia necessary to initiate the precipitation of iron(II) hydroxide from a 0.0030 M solution of FeCl₂. • K_{sp} of Fe(OH)₂ = 1.6 x 10⁻¹⁴ • $K_{\rm h}$ of $\rm NH_3 = 1.8 \ x \ 10^{-5}$ $NH_{3(aq)} + H_2 O \Leftrightarrow NH_{4(aq)} + OH_{(aq)}$ $Fe^{2+}_{(aq)} + 2 OH^{-}_{(aq)} \Leftrightarrow Fe(OH)_{2(s)}$ 39 11/09/14

Formation of Complex Ions

- Metal ions have the ability to act as Lewis acids (electron pair acceptors) toward water molecules, which act as Lewis bases.
- Lewis bases other than water also interact with metal ions (particularly transition metals)

So	Some typical coordination numbers						
C	oordination numbers		Coordination numbers	C	Coordination numbers		
Ag^+	2	Mn ²⁺	4,6	C0 ³⁺	6		
Cu ⁺	2,4	Fe ²⁺	6	Cr ³⁺	6		
Au ⁺	2,4	Co ²⁺	4,6	Au ³⁺	4		
		Ni ²⁺	4,6	Sc ³⁺	6		
		Cu ²⁺	4,6		Some com	mon ligan	ds
		Zn ²⁺	4,6		H ₂ O		SCN-
					CO		CN ⁻
					NO		I-
					NH ₃		\mathbf{F}^{-}
11/00	2/14				CH ₃ NH ₂		
11/05	7/14						⁴⁴ Br

AgCl $K_{sp} = 1.8 \times 10^{-10}$ In the presence of aqueous ammonia AgCl will dissolve. $AgCl_{(s)} \Leftrightarrow Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$ $\frac{Ag^{+}_{(aq)} + 2 \operatorname{NH}_{3(aq)} \Leftrightarrow Ag(\operatorname{NH}_{3})_{2}^{+}_{(aq)}}{AgCl_{(s)} + 2\operatorname{NH}_{3(aq)} \Leftrightarrow Ag(\operatorname{NH}_{3})_{2}^{+}_{(aq)} + Cl^{-}_{(aq)}}$ Presence of NH_3 drives the top reaction to the right ([†]solubility of AgCl). 11/09/14 45

• The stability of a complex ion in
aqueous solution is dependent
upon the size of the equilibrium
constant for its formation (K_f).
$$Ag^{+}_{(aq)} +2 NH_{3(aq)} \Leftrightarrow Ag(NH_{3})_{2}^{+}_{(aq)}$$
$$K_{f} = \left[\underbrace{Ag(NH_{3})_{2}^{+}}_{Ag^{+}} \right] = 1.7 \times 10^{7}$$

Stable or Unstable?

$$Ag^{+}_{(aq)} + 2CN^{-}_{(aq)} \leftrightarrows Ag(CN)_{2}^{-}_{(aq)}$$

$$K_{f} = \frac{[Ag(CN)_{2}]}{[Ag^{+}][CN^{-}]^{2}} = 1.0 \times 10^{21}$$
The larger the K_f the more stable the ion.

The formation of a complex ion has a strong affect on the solubility of a metal salt.

$$AgI(s) \leftrightarrows Ag^{+}(aq) + I^{-}(aq)$$

$$Adding CN^{-} shift right$$

$$Ag^{+}(aq) + 2CN^{-} \leftrightarrows Ag(CN)_{2}^{-}(aq)$$
110914

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq) \qquad K_{sp}$$

$$Ag^{+}(aq) + 2CN^{-} \leftrightarrows Ag(CN)_{2}^{-}(aq) \qquad K_{f}$$

$$AgI(s) + 2CN^{-} \leftrightarrows I^{-}(aq) + Ag(CN)_{2}^{-}(aq)$$

$$K = K_{sp} K_{f}$$

$$= (8.3 \times 10^{-17})(1.0 \times 10^{21})$$

$$= 8.3 \times 10^{4}$$
Solubility has increased!

A 0.20 mole quantity of CuSO₄ is
added to a liter of 1.20 M NH₃
solution. What is the concentration
of Cu²⁺ ions at equilibrium?
$$K_{f} \text{ for Cu}(NH_{3})_{4}^{2+} = 5.0 \times 10^{13}$$
$$Cu^{2+}_{(aq)} + 4NH_{3(aq)} \Leftrightarrow Cu(NH_{3})_{4}^{2+}_{(aq)}$$

$$Cu^{2+}_{(aq)} + 4NH_{3(aq)} \Leftrightarrow Cu(NH_3)_4^{2+}_{(aq)}$$

K_f is very large.
Assume that all of the Cu²⁺ added ends
up as complex.
NH₃consumed is 4(0.20mol)= 0.80 mol
[NH₃]at equilibrium is1.20-0.80,or 0.40M
[Cu(NH₃)₄²⁺] at equilibrium is 0.20M

 $K_{f} = \frac{Cu(NH_{3})_{4}^{+2}}{Cu^{2+}} = 5.0x10^{13}$ $\frac{0.20}{x(0.40)^4} = 5.0x10^{13}$ $X = [Cu^{2+}] = 1.6 \times 10^{-13} M$ 11/09/14 53

• Calculate the molar solubility
of silver chloride in a 1.0 M
NH₃ solution.
• K_{sp} AgCl= 1.6 x 10⁻¹⁰
• K_f Ag(NH₃)₂⁺ = 1.5 x 10⁷
$$AgCl_{(s)} \Leftrightarrow Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$
$$Ag^{+}_{(aq)} + 2NH_{3(aq)} \Leftrightarrow Ag(NH_{3})_{2}^{+}_{54}$$

Overall Equation

$$AgCl_{(s)} + 2NH_{3(aq)} \Leftrightarrow Ag(NH_{3})_{2}^{+}_{(aq)} + Cl_{(aq)}$$

$$K_{sp} = \begin{bmatrix} Ag^{+} Cl^{-} \end{bmatrix} = 1.6x10^{-10}$$

$$K_{f} = \begin{bmatrix} Ag(NH_{3})_{2}^{+} \\ Ag^{+} NH_{3} \end{bmatrix} = 1.5x10^{7}$$

$$K = K_{sp}(K_{f}) = \begin{bmatrix} Ag^{+} Cl^{-} \\ Ag^{+} NH_{3} \end{bmatrix}$$
1004

Initial	1.0	0.0	0.0
Change	-2x	$+_{\rm X}$	$+_{\rm X}$
Equil.	1.0-2x	X	X
$K = \frac{x^2}{(1.0 - 2x)^2} = 2.4x10^{-3}$ 11/09/10.049 mol of AgCl dis. in 1L of 1MNH ₃ 56			

Precipitation & Separation Ion Product (**Q**) - the value obtained from the equilibrium expression using initial concentrations. **For BaSO**₄: $Q = [Ba^{+2}][SO_4^{2-}]$

Exactly 200.0mL of 0.0040M BaCl₂ are added to 600.0mL of 0.0080M K_2SO_4 . Will a precipitate form?

Ksp BaSO₄=1.1 x 10⁻¹⁰

According to solubility rules the only precipitate that might form is BaSO₄.

$$Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \Leftrightarrow BaSO_{4(s)}$$

Fractional Precipitation Selective Precipitation

Ions in a solution can be separated from each other on the basis of the different solubilities of their salts.
≻Add HCl to a solution containing Ag⁺ and Cu²⁺ and only the AgCl precipitates out.

63

